Close Menu
AM ChronicleAM Chronicle
  • Content
    • News
    • Insights
    • Case Studies
    • AM Infocast
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Facebook Instagram YouTube LinkedIn
  • About us
  • Media Kit
  • Contact us
Facebook Instagram YouTube LinkedIn
AM ChronicleAM Chronicle
  • Content
    1. News
    2. Insights
    3. Case Studies
    4. AM Infocast
    5. View All
    Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University

    Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

    August 30, 2025
    Rocket Lab Signs MoU with Nikon SLM Solutions for Next-Generation Ultra-Large Metal AM Platform

    Rocket Lab Signs MoU with Nikon SLM Solutions for Next-Generation Ultra-Large Metal AM Platform

    August 29, 2025
    Honeywell-Led Consortium Secures £14.1 Million for AI-Driven Additive Manufacturing in Aerospace Sector

    Honeywell-Led Consortium Secures £14.1 Million for AI-Driven Additive Manufacturing in Aerospace Sector

    August 29, 2025
    Credits: WFIRM

    WFIRM to Test 3D Bioprinted Liver Tissue Onboard the ISS

    August 25, 2025
    Making Milestones: 3D printing for a greener tomorrow

    Making Milestones: 3D printing for a greener tomorrow

    August 29, 2025
    Nestlé embraces technology and innovation in 3D printing

    Nestlé embraces technology and innovation in 3D printing

    August 29, 2025
    Pure copper and copper alloy (CuCrZr, CuCrNb, CuSn10) samples produced using ADDIREEN's green-laser powder bed fusion AM machines (Image courtesy: Addireen Technologies)

    Addireen: Pioneering Copper Printing in Metal Additive Manufacturing

    August 12, 2025
    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    Digital Twin Integration in Additive Manufacturing Systems: Revolutionizing Design, Production, and Lifecycle Management

    July 4, 2025
    Source: Formlabs

    Case Study: Eaton Corporation’s Strategic Transition to In-House 3D Printing for Tooling Applications

    August 29, 2025
    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    Revolutionizing Atherosclerosis Research with 3D-Bioprinted Brain Vessels

    August 25, 2025
    Formlabs fuse 1+

    How Imaginarium Helped Kaash Studio Scale with the Right 3D Printing Technology

    April 12, 2025
    The Formlabs Fuse 1+ 30W

    Kaash Studio Optimized Service Bureau Operations with Formlabs 3D Printers- Case Study

    January 30, 2025
    Sustainable Production of Metal Powder for Additive Manufacturing

    Sustainable Production of Metal Powder for Additive Manufacturing with Bruce Bradshaw

    February 15, 2024
    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    Meeting Evolving Customer Demands in the Additive Manufacturing Industry with Tyler Reid

    February 9, 2024
    Innovation is at the heart of AMUG with Diana Kalisz

    Innovation is at the heart of AMUG with Diana Kalisz

    March 7, 2023
    3D Printing Workshops at AMUG with Edward Graham

    3D Printing Workshops at AMUG with Edward Graham

    March 7, 2023
    Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University

    Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

    August 30, 2025
    Making Milestones: 3D printing for a greener tomorrow

    Making Milestones: 3D printing for a greener tomorrow

    August 29, 2025
    Nestlé embraces technology and innovation in 3D printing

    Nestlé embraces technology and innovation in 3D printing

    August 29, 2025
    Source: Formlabs

    Case Study: Eaton Corporation’s Strategic Transition to In-House 3D Printing for Tooling Applications

    August 29, 2025
  • Focus Regions
    • India
    • Asia Pacific
    • Middle East
    • North America
    • Europe
  • Industries
    • Automotive
    • Aerospace
    • Defence
    • Energy
    • Construction
    • Healthcare
    • Tooling
    • Engineering
  • Training
  • Magazine
    • Digital Issues
  • Events
Subscribe
AM ChronicleAM Chronicle
Home » Insights

Heat Treatment to Improve Patient-Specific Implants Manufactured Using Metal AM

Insights By Dr. Satyam Suwas, Kaushik Chatterjee, Saurabh Kumar Gupta and Satya Vamsi KrishnaJanuary 16, 20234 Mins Read
3D printing Implants for Atrophic Jaws1
LinkedIn Twitter Facebook WhatsApp Pinterest Email Copy Link

The article discuses about innovative heat treatment used by researchers at IISC to transform martensitic microstructure of Ti-6Al-4V into a bimodal microstructure. The manufacturing method was SLM followed by innovative heat treatment. The results indicated improvement in ductility and performance comparable to conventionally manufactured medical devices.

Additive manufacturing (AM) is a layer-by-layer fabrication process in which thin layers are deposited over a substrate progressively to build a three-dimensional (3D) object. Metal AM processes are grouped into two categories based on ASTM standards:  powder bed fusion and directed energy deposition. Laser powder bed fusion/ selective laser melting (SLM) has emerged as a mature technology with the availability of manufacturing units from several suppliers. The fabrication of dense parts necessitates optimization of the processing parameters, such as laser power, laser speed, hatch spacing, powder layer thickness, etc. Our research group at the Indian Institute of Science (IISc) is actively working on additive manufacturing of several metallic biomaterials, including SLM of popular biomedical alloys such as Ti-6Al-4V, SS316, and Co-26Cr-8Mo, and wire arc additive manufacturing of Zn, which is recognized as an emerging class of resorbable metallic biomaterials.

The team have extensively studied the effect of processing parameters on fabricated alloys by characterizing the porosity, residual stress, mechanical behavior, and crystallographic texture. It is well known in the AM community that additively manufactured parts must be subject to stress relieving treatment for the release of residual stress to minimize warping of the fabricated components after wire cutting. Another critical challenge associated with several fabricated components, particularly of Ti6Al4V, is their mechanical performance. This limitation arises because the microstructure of the additively manufactured part is different from its cast and wrought counterparts. The cooling rate in AM is very high as compared to conventional arc melting resulting in altered microstructures. This difference has motivated researchers globally to work towards optimized heat treatments and surface engineering strategies for the parts produced by AM to alter bulk and surface microstructure for enhanced performance. This article describes our activities on AM Ti-6Al-4V and its successful clinical translation.

In the research work conducted by IISc, the team fabricated near-net-shape bone plates by SLM of Ti-6Al-4V powder. The resultant parts exhibited martensitic microstructure, which results in poor ductility, thereby limiting the application for components. To address this challenge, an innovative heat treatment based on repeated heating and cooling below but close to the β-transus was applied to bone plates after fabrication. This heat treatment resulted in the transformation of the martensitic microstructure into a bimodal microstructure. three-point bend test and tensile test performed on the heat-treated plates revealed a large improvement in ductility, and the results were comparable to plates that were conventionally manufactured from wrought alloy. The design of the bone plate used in the study and its mechanical behavior is shown in Fig.1. The corrosion behavior and cytocompatibility of all the plates were similar. Thus, this heat treatment enables us to additively manufacture Ti6Al4V orthopedic parts to achieve biomechanical performance comparable to conventionally manufactured medical devices.

Metal AM printed bone plate
Figure 1 a) A simple design of additively manufactured bone plate used in the study, b) Plate after milling, c) Stress-strain behavior during tensile testing, d) Bending behavior during 3-point bend test; AM: Additively manufactured, HT: Heat treated plate, WR: Plate manufactured using wrought Ti-6Al-4V

This technology is now being applied for the treatment of malunions of the arm. In collaboration with orthopedic surgeons at the Sanjay Gandhi Institute Of Trauma and Orthopaedics, our group at IISc is designing and fabricating patient-specific bone plates for defects in the distal humerus, radius, and ulna bones, followed by heat treatment prior to implantation. A patient with above mentioned clinical deformity was treated with additively manufactured Ti-6Al-4V alloy, as shown in Fig.2. The use of these additively manufactured implants results in reduced surgery time and nearly full restoration of the functionality in the upper limb of the patient post-surgery in contrast to the conventional mass-produced implants, as assessed by the surgeon. Malunions are common in India, where patients receive inadequate healthcare resulting in loss of hand function. The emergence of additive manufacturing can, thus, open new avenues for improved healthcare through patient-specific implants leading to a better quality of life for the patients.

Patient specific metal AM bone plate
Figure 2 Case study depicting the treatment of a patient with a patient-specific additively manufactured bone plate.

Authors 

Saurabh Kumar Gupta1*, Satya Vamsi Krishna2, Satyam Suwas1, Kaushik Chatterjee1
1Department of Materials Engineering, Indian Institute of Science, Bangalore, India
1Sanjay Gandhi Institute Of Trauma and Orthopaedics, Bangalore, India

* For more information: [email protected]

Subscribe to AM Chronicle Newsletter to stay connected:  https://bit.ly/3fBZ1mP 

Follow us on LinkedIn: https://bit.ly/3IjhrFq 

Visit for more interesting content on additive manufacturing: https://amchronicle.com

3d printing 3D Printing in Healthcare Bone plates Healthcare Metal AM Orthopedic devices Selective Laser Melting Ti-6Al-4V alloy
Dr. Satyam Suwas, Kaushik Chatterjee, Saurabh Kumar Gupta and Satya Vamsi Krishna

NAMIC GLOBAL AM SUMMIT 2025
LATEST FROM AM
Marvin Raupert – an engineer on the project – pictured with a model demonstrating the 3D printing process., Credits: Leibniz University News

Leibniz University Researchers Successfully Demonstrate Metal 3D Printing in Microgravity

August 30, 20251 Min Read
Making Milestones: 3D printing for a greener tomorrow Insights

Making Milestones: 3D printing for a greener tomorrow

August 29, 20257 Mins Read
Nestlé embraces technology and innovation in 3D printing Insights

Nestlé embraces technology and innovation in 3D printing

August 29, 20253 Mins Read

CONNECT WITH US

  • 126 A, Dhuruwadi, A. V. Nagvekar Marg, Prabhadevi, Mumbai 400025
  • [email protected]
  • +91 022 24306319
Facebook Instagram YouTube LinkedIn

Newsletter

Subscribe to the AM Chronicle mailer to receive latest tech updates and insights from global industry experts.

SUBSCRIBE NOW

Quick Links

  • News
  • Insights
  • Case Studies
  • AM Training
  • AM Infocast
  • AM Magazine
  • Events

Media

  • Advertise with us
  • Sponsored Articles
  • Media Kit

Events

  • AM Conclave 2025
    24-25 September 2025 | ADNEC, Abu Dhabi
  • AMTECH 2025
    3-4 December 2025 | KTPO, Whitefield, Bengaluru
CNT Expositions & Services LLP
© 2025 CNT Expositions & Services LLP.
  • Privacy Policy
  • Cookie Policy

Type above and press Enter to search. Press Esc to cancel.



0 / 75